

Quantitative Aptitude

<u>Concepts based on Ratio Proportion (Age & Number Based):</u>

Concept	Key Point to Remember	
1. Present Age Ratio	Let ages be: a×k and b×k (based on given ratio)	
2. Age Difference	The difference in ages always remains constant over time	
3. Future or Past Age Problems	Add/subtract same number of years to both ratios before comparing	
4. Cross Multiplication	Use cross multiplication to solve equations involving ratio after 'x' years	
5. Sum of Ages	Total Age = Sum of parts = (a + b + c) × common multiple (k)	
6. Age = Present ± Years	Age after n years = Present age + n Age n years ago = Present age – n	
7. Watch for Tricky Language	Words like 'after', 'before', 'twice the age', 'thrice as old' change framing	
8. Frame Equations Carefully	Use "age + years" or "age – years" while maintaining the ratio correctly	
9. Use one variable (x or k)	Convert ratios to multiples of a variable for easy substitution	
10. Read units of age carefully	Check if the age is given in years, months or a combination (rare cases)	

Ratio Proportion <u>Concepts based on Coin:</u>

S.No.	Concept	Explanation	Example
1	Basic Ratio of	Ratio given is based on number of coins , not value.	$21:22:25$ coins = $3:2:1 \rightarrow Values = 3 \times 1 + 1$
	Number of Coins		2×2 + 1×5 = 🛛 12
2	Ratio Based on 📃	Ratio given is based on value , must convert to	Value ratio $1:4:5 \rightarrow \boxed{2}1x$, $\boxed{2}4x$, $\boxed{2}5x \rightarrow No.$ of
	Value	number of <mark>coi</mark> ns using: <mark>Va</mark> lue ÷ Denomination	$coins = x, 2x, x \Rightarrow Ratio = 1:2:1$
3	Total Number of	Use total parts of ratio to find coins of each	$21:22:25 = 2:3:5$, Total = $100 \rightarrow$ Total parts
	Coins Given	denomination: Coins = (Ratio ÷ Total Ratio) × Total	$= 10 \rightarrow 21 \text{ coins} = 20, 22 = 30, 25 = 50$
		Coins	
4	Total Value of Coins	Use weighted sum formula: Total Value = (Qty ×	Ratio = 3:2:1, Total value = $\mathbb{Z}360 \rightarrow 3x + 4x$
	Given	Denomination) for each coin	+ 5x = $12x = 360 \Rightarrow x = 30 \rightarrow \text{Coins} = 90, 60,$
			30
5	Difference-Based	Use difference in value or count to form equations	Ratio of 21:22 = 3:4, Value difference = 210
	Questions	and solve for ratio parts.	$\rightarrow 8x - 3x = 5x = 10 \Rightarrow x = 2 \Rightarrow 21 \text{ coins} = 6,$
			2 = 8
6	Mixture or	When coin counts are added/removed, resulting in a	$ \mathbb{2}1:\mathbb{2}2 = 2:5; add 10 \mathbb{2}1 \text{ coins} \rightarrow \text{New ratio} = $
	Replacement Type	new ratio; use ratio-change equation.	$4:5 \Rightarrow (2x + 10)/5x = 4/5 \Rightarrow$ solve for x

For more study material and quizzes check out SSC CGL Target 150+ Success Series