

Number System

<u>Unit Digit:</u>

Concept	Explanation	Example
Unit Digit	The digit in the one's place of a number.	Unit digit of 237 is 7 .
Unit Digit of	Follows a cyclic pattern depending on the base.	Unit digit of 21=22^1 = 221=2, 22=42^2 = 422=4,
Powers		23=82^3 = 823=8
Cyclic Patterns	Most digits (1–9) have repeating cycles in their	$2 \rightarrow \{2,4,8,6\}$ (Cycle length = 4)
	powers.	
Shortcut	Divide power by cycle length & find remainder \rightarrow	Find unit digit of 7457^{45}745: Cycle of 7 =
Method	use remainder to find unit digit.	$\{7,9,3,1\}, 45 \mod 4 = 1 \rightarrow Ans: 7$
Special Cases	Some numbers (like 5, 6) always end in the same	5n5^n5n ends in 5 , 6n6^n6n ends in 6 .
	digit for all powers.	

Factors:

Concept	Explanation	Example
Factor/Divisor	A number that divides another number exactly (no remainder).	Factors of 12 : 1, 2, 3, 4, 6, 12
Total No. of Factors	Use prime factorization: Add 1 to each exponent and multiply.	$12=22\times3112 = 2^2 \times 3^{112}=22\times31 \rightarrow$ (2+1)(1+1) = 6 factors
Sum of Factors	Use formula with prime factorization.	$12=22\times3112 = 2^{2}\times3^{1}12=22\times31 \rightarrow (1+2+4)(1+3) = 7\times4 = 28$
Even/Odd Factors	Even \rightarrow include only factors with at least one 2; Odd \rightarrow exclude all 2s.	Odd factors of 36 = factors of 32=1,3,93^2 = 1, 3, 932=1,3,9
Perfect Square Check	A number is a perfect square if all exponents in its prime factorization are even.	$36=22\times3236 = 2^2\times3^236=22\times32 \rightarrow$ Perfect square
Co-prime Numbers	Two numbers having only 1 as their common factor.	(8, 15) are co-prime \rightarrow GCD = 1
Highest Common Factor (HCF)	Greatest number that divides both numbers.	HCF of 12 and 18 = 6
Least Common Multiple (LCM)	Smallest number divisible by both numbers.	LCM of 4 and 6 = 12

No of Zeros:

Concept	Formula / Rule	Explanation / Example
Trailing zeros in $n!$	$\left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{25} \right\rfloor + \left\lfloor \frac{n}{125} \right\rfloor + \dots$	Count of 5s in prime factorization of $n!$; 10 = 2 × 5, but 2s are always more, so count 5s. Eg: Trailing zeros in 100! = 20 + 4 = 24
Trailing zeros in a power a^b	Count of 10s in a^b	Prime factorize <i>a</i> , find min(power of 2, power of 5) in result
Trailing zeros in a number like 1000	Count number of zeros at the end	Eg: 1000 → 3 trailing zeros
Zeros in decimal	Depends on denominator of fraction	Eg: 1/10 = 0.1 (1 zero), 1/100 = 0.01 (2 zeros)
Ending zeros in product of numbers	Count net power of 10 in the product	Eg: $2^3 \times 5^4 \rightarrow \text{Min(3,4)}$ = 3 \rightarrow 3 zeros

I

Remainder Theorem:				
Type of Division	Formula / Concept	Example		
f(a) is remainder when polynomial $f(x)$ is divided by $x-a$	Remainder = $f(a)$	Eg: Remainder when $f(x) = x^2 + 3x + 2$ divided by $x - 2$ is $f(2) = 4 + 6 + 2 = * * 12 * *$		
$a^n \mod b$ when a and b are coprime	Use Euler's Theorem: $a^{\phi(b)}\equiv 1 \mod b$	Eg: 7 ¹⁰⁰ mod 10: $\varphi(10)=4 \rightarrow 7^4 \equiv 1 \mod 10 \rightarrow 7^{100} \equiv 1^{25} = 1$		
$a^n \mod b$ for small values	Use cyclicity / patterns	Eg: $3^n \mod 4 \rightarrow 3$, 1, 3, 1 pattern of 2		
Divisibility of large numbers	Break number using modulo	Eg: Find remainder when 111111 (15 times) is divided by 9: Since sum of digits = $15 \rightarrow$ remainder = 6		
Division of powers like $2^{20} \mod 7$	Use cyclicity of powers	Powers of 2 mod 7: 2, 4, 1 (repeat every 3) \rightarrow 20 mod 3 = 2 \rightarrow answer is $2^2 = * * 4 * *$		
Special case: a^n-b^n divisible by $a-b$	Always divisible	Eg: 7^5-3^5 divisible by $7-3=4$		

<u>Divisibility Rules:</u>

Divisor	Divisibility Rule	Example
2	If the number ends in 0, 2, 4, 6, or 8.	134 is divisible by 2 (ends in 4).
3	If the sum of the digits is divisible by 3 .	$123 \rightarrow 1+2+3=6 \rightarrow \text{divisible by 3.}$
4	If the last two digits form a number divisible by 4.	316 is divisible by 4 ($16 \div 4 = 4$).
5	If the number ends in 0 or 5 .	475, 900 both end in 5 or 0.
6	If the number is divisible by both 2 and 3 .	132 is even and 1+3+2=6 (div. by 3).
7	Double the last digit, subtract from the rest; if result is divisible by 7.	203: 20 – 6 = $14 \rightarrow$ divisible by 7.
8	If the last three digits form a number divisible by 8.	$1216 \rightarrow 216 \div 8 = 27.$
9	If the sum of the digits is divisible by 9.	$729 \rightarrow 7+2+9=18 \rightarrow divisible by 9.$
10	If the number ends in 0 .	370, 800 end in 0.
11	Alternating sum of digits is divisible by 11 (e.g. +, –, +, –).	$121 \rightarrow 1-2+1 = 0 \rightarrow \text{divisible by } 11.$
12	If the number is divisible by both 3 and 4 .	240: 2+4+0=6 (div. by 3), 40 div. by 4.
13	Multiply last digit by 9, subtract from rest. If result divisible by 13.	637: 63 – (7×9)=63–63=0 → 0K.
14	If the number is divisible by 2 and 7 .	196 is even and divisible by 7.
15	If the number is divisible by 3 and 5 .	225 is div. by 3 (2+2+5=9) and ends 5.
16	If the last 4 digits form a number divisible by 16.	$65472 \rightarrow 5472 \div 16 = 342.$
17	Subtract 5 × last digit from the rest. Repeat if needed.	$221 \rightarrow 22 - 5 \times 1 = 17 \rightarrow \text{divisible}.$
18	If the number is divisible by 2 and 9 .	$198 \rightarrow$ even, 1+9+8=18 \rightarrow divisible.
19	Multiply last digit by 2, add to rest. If divisible by 19.	$133 \rightarrow 13 + (2 \times 3) = 13 + 6 = 19 \rightarrow 0$ K.
20	If the number ends in 00, 20, 40, 60, or 80 .	560 ends in $60 \rightarrow$ divisible by 20.

Ι

