

Reasoning Mega Quiz for RRB NTPC (Solutions)

S1. Ans.(c)

Sol. Let the speed of second train be x kmph Relative speed = (30 + x) kmph $= (30 + x) \times \frac{5}{18} \text{ m/sec}$ $= \frac{150 + 100}{10} = 25 \text{ m/sec}$ $\Rightarrow 30 + x = \frac{25 \times 18}{5} = 90$ \Rightarrow x = 60 kmps

S2. Ans.(c) Sol.

В A

t + 45 t +75

> Old New

Speed B 4 ÷ 3

Time B

225 minA = 225 + 45 = 270Speed of A = $\frac{450}{270} \times 60 = 100$ km/hr

S3. Ans.(b)

1

Sol. Length of bridge = 1000 m. Length of train = 500 m. Total distance covered in clearing the bridge = 1500 m. Time taken = 120 seconds. $\therefore \text{Speed} = \left(\frac{1500}{120}\right) \text{m/sec}$ $=\left(\frac{25}{2}\times\frac{18}{5}\right)$ kmph = 45 kmph.

S4. Ans.(B) Sol. Given Distance = 900Time = 25 hour Speed = $\frac{900}{25}$ Convert speed in m/s = $\frac{900}{25} \times \frac{5}{18} = 10$ m/sec **TEST SERIES** Bilingual **SSC CGL 2019 TOPIC WISE 60 Practice Mocks** Validity: 6 Months

S5. Ans.(b) Sol. Let the required speed by x km/hr Then, $\frac{2 \times 64 \times x}{64 + x} = 56$ $\therefore 128x = 64 \times 56 + 56x$ $\therefore x = \frac{64 \times 56}{72} = 49.77$ km/hr

S6. Ans.(b)

Sol. Let speed of train C=S₂ We know that Relative speed = $\frac{\text{Distance}}{\text{time}}$ $(S_1 - S_2) = \frac{400 \text{ meter}}{2 \text{ min}}$ $(100 - S_2) = \frac{400 \text{ meter} \times 60 \text{ hour}}{1000 \times 2 \text{ min}}$ $100 - S_2 = 12 \text{ km/hr}.$ $S_2 = 100 - 12 \text{ km/hr} = 88 \text{ km/hr}$

S7. Ans.(b)

Sol. Total distance covered = $90 \times \frac{5}{18} \times 38 = 950$ m So, length of bridge = 950 - 287 = 663

S8. Ans.(b)

Sol. Let no. of wagons = w and speed of engine without wagon = $\frac{20}{3}$ m/sec = 24 km/hr The speed of train = S - K \sqrt{w} 20 = 24 - K \sqrt{w} K = 2 When train will stop it's speed become zero 0 = 24 - 2 \sqrt{w} w = 144

so, we can put (144 - 1) = 143 wagons just can move with its least possible speed.

S9. Ans.(a)

2

Sol. Time taken to covered 600 km = $\left(\frac{600}{100}\right)$ hrs = 6 hrs. Number of stoppages = $\frac{600}{75} - 1 = 7$ Total time of stoppage = (3×7) min = 21 min Hence, total time taken = 6 hrs 21 min

S10. Ans.(a)

Sol. Case I \rightarrow If speed is decreased by $\frac{1}{6}$. So, the time will be increased by $\frac{1}{5}$, which is equal to 1 hour 12 min.

 $A \leftarrow 1 hr \rightarrow P$ $\therefore \text{ Time required for remaining part(x) of the journey is} = 5 \times 72 \text{ min} = 360 \text{ min} = 6 \text{ hour}$ $A \qquad P \leftarrow 60 \rightarrow Q \leftarrow x-60 \rightarrow B$ А

So, the normal time required for this remaining part (x - 60) of journey = $5 \times 1 = 5$ hour. So, it is clear that when the train runs 60 km of its normal speed it takes 1 hour less, so we can calculate in 1 hour the train can run 60 km with its normal speed. Thus, normal speed of train is 60 km/h. So, Train requires 6 hours at it's normal speed of 60 km/h for x km. then $x = 6 \times 60 = 360 \text{ km}$ Thus, the total distance = Distance travelled before accident + Distance travelled after accidents "ż $= 60 \times 1 + 60 \times 6 = 420 \text{ km}$

S11. Ans.(c)

Sol.

A + B + C's 1 hour efficiency = $\frac{1}{6}$ A + B + C's 2 hour work = $\frac{2}{6} = \frac{1}{3}$ Remaining work = $1 - \frac{1}{2} = \frac{2}{2}$ $\frac{2}{3}$ work done by A + B = 7 1 work A + B = $\frac{21}{2}$ $A + B + C \Longrightarrow 6$ 7 42 $A+B \Rightarrow \frac{21}{2} = 4$ Efficiency of C = 7 - 4 = 3C alone will fill the tank in = $\frac{42}{3}$ = 14 hours S12. Ans.(c) Sol. А 10 18 \Rightarrow 15 180 В \Rightarrow 12 $A + B - C \Rightarrow 18$ 10 A + B - C = 1018 + 12 - C = 10-C = 10 - 30C = 20C will empty the cistern in $=\frac{180}{20}=9$ hours

12 Months Subscription

Live Class, Video Course, **Test Series, e-Books, Books**

English (With Books)

S13. Ans.(a) Sol. 20 15 $A \Rightarrow$ $B \Rightarrow$ 25 300 12 $C \Rightarrow -30$ -10 $A + B + C \Rightarrow 15 + 12 - 10 \Rightarrow 17$ 3 hours work \rightarrow 17 51 hours work \rightarrow 289 Remaining work = 11 Now it's A's turn Time taken by A = $\frac{11}{15}$ Total time = $51\frac{11}{15}$

S14. Ans.(c)

Sol. Efficiency of A = $\frac{1}{20}$ 20% efficiency of A = $\frac{1}{20} \times \frac{20}{100} = \frac{1}{100}$ Efficiency \rightarrow A : 20% Efficiency A = $\frac{1}{20}$: $\frac{1}{100}$ = 5 : 1 Time Ratio $\rightarrow 1:5$ $1r \rightarrow 20$ minutes $5r \rightarrow 100$ minutes 1 pipe takes = 100 minutes 5 pipe will take = $\frac{100}{5}$ = 20 minutes

S15. Ans.(d)

Sol. $A \Rightarrow 40$ 3 $B \Rightarrow 60 120$ 2 $C \Rightarrow 30$ 4

3 minutes work = 3 + 3 + 3 + 2 + 4 = 15 24 minutes work = 15 × 8 = 120

S16. Ans.(a)

Sol. А 8 3 24 B 12 2 Time = $\frac{24}{5}$ = $4\frac{4}{5}$ hours

With leak in the bottom the cistern will be full in

 $= 6 + 4\frac{4}{5} = 10\frac{4}{5}$ $\frac{1}{8} + \frac{1}{12} + \frac{1}{x} = \frac{5}{54}$ $\frac{1}{x} = \frac{5}{54} - \frac{1}{8} - \frac{1}{12}$ $\frac{1}{x} = \frac{20 - 27 - 18}{216}$ $\frac{1}{x} = \frac{-25}{216}$ $x = \frac{216}{25}$

S17. Ans.(c) Sol.

A : B Efficiency \rightarrow 6 : 1 Time \rightarrow 1 : 6 $6r \rightarrow 28$ $1r \rightarrow \frac{14}{3}$ Total time $= \frac{1}{28} + \frac{3}{14}$ $= \frac{1+6}{28} = \frac{7}{28} = 4$ minutes

S18. Ans.(d)

Sol. $\frac{1}{10} + \frac{1}{15} + \frac{1}{x} = \frac{1}{18}$ $\frac{1}{x} = \frac{1}{18} - \frac{1}{15} - \frac{1}{10}$ $= \frac{10 - 12 - 18}{180}$ $x = \frac{180}{20} = 9 \text{ minutes}$

S19. Ans.(b)

Sol. A + Q $\frac{1}{6} + \frac{1}{\ln |et|} = \frac{1}{8}$ $\frac{1}{\ln |et|} = \frac{1}{8} - \frac{1}{6}$ $\frac{1}{\ln |et|} = \frac{3 - 4}{24}$ Inlet $\Rightarrow 24$ hours Capacity = 4 × 24 × 60 = 5760

12 Months Subscription

S20. Ans.(b) **Sol.** Let the filling capacity \Rightarrow x m³ Emptying capacity \Rightarrow x + 10 m³ $\frac{2400}{x} - \frac{2400}{x+10} = 8$ $\frac{x+10-x}{(x+10)x} = \frac{1}{300}$ 3000 = x(x + 10)Using option (b) $50 \times 60 = 3000$ satisfies

S21. Ans.(d) **Sol.** Speed = $\left(\frac{110}{3}\right)$ m/sec Time taken to cross railway platform $= \left[(100 + 165) \times \frac{3}{110} \right]$ sec. $= \left(275 \times \frac{3}{110}\right) \sec = 7.5 \sec \frac{3}{110}$

S22. Ans.(a) **Sol.** Speed of train relative to man

= (25 + 5) m/sec = 30 m/sec. \therefore Time taken to pass the man $=\left(\frac{150}{30}\right)$ sec = 5 sec.

S23. Ans.(a)

Sol. Speed of the train relative to man = $\binom{110}{6}$ m/sec $=\left(\frac{110}{6}\times\frac{18}{5}\right)$ kmph = 66 kmph Let the speed of the train be x kmph Then, relative speed = (x + 6) kmph.

x + 6 = 66 or x = 60 kmph.

S24. Ans.(a)

Sol. Let the speed of train C be x kmph Speed of B relative to C = (120 - x) $= \left[(120 - x) \times \frac{5}{18} \right]$ m/sec $= \left[\frac{600 - 5x}{18} \right]$ m/sec Distance covered = (100 + 200) m = 300 m. $\therefore \frac{300}{\left(\frac{600-5x}{18}\right)} = 120 \Rightarrow 5400$ $= 120(600 - 5x) \Rightarrow x = 111.$

S25. Ans.(d)

Sol. Relative speed = (36 + 45) km/hr $=\left(81\times\frac{5}{18}\right)$ m/sec $=\left(\frac{45}{2}\right)$ m/sec Length of faster train = $\left(\frac{45}{2} \times 8\right)$ m = 180 m.

6