Special Quant Quiz (Advance) SSC CGL Tier-II 2016


Q1. If the sum of the interior angles of a regular polygon be 1080°, the number of sides of the polygon is  
(a) 6
(b) 8
(c) 10
(d) 12

Q2. If the sine of an angle is 1/3, then cosine of that angle is:  
(a) equal to 1/3 
(b) less than 1/3 
(c) greater than 1/3 
(d) not known 

Q3. The least value of 2sin^2⁡θ+3cos^2⁡θ  is:  
(a) 1/2
(b) 1
(c) 2
(d) 3

Q4. If 0 < θ £ π/2, then which of the following is true? 
(a) (tan^2θ+cot^2⁡θ)≥2
(b) (tan^2θ+cot^2⁡θ)≤2
(c) (tan^2θ+cot^2⁡θ)≤1
(d) None of these 

Q5. If 0<θ<π/2, which of the following is true?  
(a) sin^2⁡θ+1/sin^2⁡θ <2
(b) sin^2⁡θ+1/sin^2⁡θ =2
(c) sin^2⁡θ+1/sin^2⁡θ >2
(d) None of these  

Q6. If 0° < A < 90° and cosA – sinA > 0 then 
cosA + sinA cannot be equal to the:  
(a) 1/3 
(b) 1/2
(c) 1/√2
(d) √2 

Q7. If x=√3+√2, then the value of (x+1/x) is  
(a) 2√2
(b) 2√3
(c) 2
(d) 3 

Q8. If (x+1/x)^2=3 then the value of (x^72+x^66+x^54+x^6+1)
(a) 0
(b) 1
(c) 84
(d) 206

Q9. If a + b + c = 6, a^2+b^2+c^2=14 and a^3+b^3+c^3=36, then the value of abc is   
(a) 3
(b) 6
(c) 9
(d) 12
Q10. Which of the following can’t be the ratio of the sides of a triangle.  
(a) 2:3:4
(b)1:3:6
(c) 3:4:5
(d) 3:4:6

Q11. If x : y = 7 : 3 then the value of (xy + y^2)/(x^2  – y^2 ) is 
(a) 3/4
(b) 4/3
(c) 3/7
(d) 7/3

Q12. In a regular polygon, the exterior and interior angles are in the ratio 1 : 4. The number of sides of the polygon is 
(a) 5
(b) 10
(c) 3
(d) 8

Q13. The sum of interior angles of a regular polygon is 1440°. The number of sides of the polygon is  
(a) 10
(b) 12
(c) 6
(d) 8

Q14. The ratio of each interior angle to each exterior angle of a regular polygon is 3 : 1. The number of sides of the polygon is: 
(a) 6
(b) 7
(c) 8
(d) 9

Q15. The angles of a quadrilateral are in the ratio 1 : 2 : 3 : 4, the largest angle is: 
(a) 120°
(b) 134° 
(c) 144°
(d) 150°



Solutions


S1. Ans.(b)
Sol. According to question 
Sum of interior angle 
= (n – 2) × 180° 
Given: 
Sum of interior angle = 1080° 
(n – 2) × 108° = 1080° 
(n-2)=(1080°)/180 
(n-2)=6 
n=6+2=8 
Number of sides n = 8 

S2. Ans.(c)
Sol. 
 cos⁡θ=√(1-sin^2⁡θ )=√(1-1/9)=√(8/9)>√(1/9)
So, cos⁡θ>1/3

S3. Ans.(c)
Sol.
2 sin^2⁡θ+3 cos^2⁡θ  = 2(sin^2⁡θ+cos^2⁡θ)+cos^2⁡θ  
=2+cos^2⁡θ≥2 
Least value of 2 sin^2⁡θ+3 cos^2⁡θ=2 

S4. Ans.(c)
Sol. tan^2⁡θ+cot^2⁡θ=tan^2⁡θ+cot^2⁡θ-2 tan⁡θ.cot⁡θ+2 tan⁡θ.cot⁡θ 
=(tan⁡θ-cot⁡θ)^2+2≥2 
S5. Ans.(a)
Sol. sin^2⁡θ+1/sin^2⁡θ  
=sin^2⁡θ+1/sin^2⁡θ -2+2 
=(sin⁡θ-1/sin⁡θ)^2+2>2 

S6. Ans.(d)
Sol. cos⁡A-sin⁡A>0 
sin⁡A<cos⁡A 
tan⁡A<1⇒A<45° 
∴sin⁡A+cos⁡A<sin⁡45°+cos⁡45° 
So, it will not be equal to the √2

S7. Ans.(b)
Sol. x=√3+√2
1/x=1/(√3+√2)×(√3-√2)/(√3-√2)=√3-√2 
x+1/x=√3+√2+√3-√2=2√3 

S8. Ans.(a)
Sol. (x+1/x)^2=3 
x+1/x=√3 
x^3+1/x^3 +3√3=3√3 
x^3+1/x^3 =0 
x^6+1=0 
x^6=-1 
x^72+x^66+x^54+x^24+x^6+1 
(x^6 )^12+(x^6 )^11+(x^6 )^9+(x^6 )^4+x^6+1 
(-1)^12+(-1)^11+(-1)^9+(-1)^4+1 
1-1-1+1-1+1=0 

S9. Ans.(b) 
Sol. a + b + c = 6 
=a^2+b^2+c^2=14 
a^3+b^3+c^3=36 
Put values as 
a = 1, b = 2, c = 3
1 + 2+ 3 = 6
1 + 4 + 9 = 14 
1 + 8 + 27 = 36 
∴ abc = 1 × 2 × 3 = 6 
S10. Ans.(b)
Sol.. We know that sum of the two side are always greater than third side.
Now, if we consider option (b)
The ratio of the sides of a triangle , 1 : 3 : 6
 side of a triangle x, 3x, & 6x but here x + 3x < 6x 
So, 1 : 3 : 6 can’t be the ratio of side of a triangle. 

S11. Ans.(a)
Sol. 
x : y 
7 : 3 
∴  (xy +y^2)/(x^2 -y^2)=(21 + 9)/(49 – 9)=30/40=3/4 

S12. Ans.(b)
Sol. According to question 
(Exterior angle )/(Interior angle )=1/4=x/4x 
As we know that 
Interior angle + Exteriors angle = 180° 
∴ x + 4x = 180°
5x = 180° 
x = 36° 
∴ Number of sides 
=(360°)/(Exterior angle) 
Number of sides =(360°)/(36°)=10 

S13. Ans.(a)
Sol. If the number of sides of regular polygon be = n 
sum of the interior angle = (n – 2) × 180° =1440°
n – 2=8
so,  n=10

S14. Ans.(c)
Sol. Interior angle + exterior angle = 180° 
3x + x = 180° 
4x = 180°
x = 45° 
Each exterior angle = 45° 
Number of sides =(360°)/(Exterior angle) 
=(360°)/(45°)=8 

S15. Ans.(c)
Sol. Angles be x, 2x, 3x, 4x 
∴ x + 2x + 3x + 4x = 360° ⇒ 10x = 360° ⇒ x = 36°  
∴ largest angle = 4x = 144° 







×
Login
OR

Forgot Password?

×
Sign Up
OR
Forgot Password
Enter the email address associated with your account, and we'll email you an OTP to verify it's you.


Reset Password
Please enter the OTP sent to
/6


×
CHANGE PASSWORD