**Q2. Two circles having radii r units intersect each other in such a way that each of them passes through the centre of the other. Then the length of their common chord is**

(a) √2r units

(b) √3r units

(c) √5r units

(d) r units

**Q3. The chord of a circle is equal to its radius. The angle subtended by this chord at the minor arc of the circle is**

(a) 150°

(b) 60°

(c) 75°

(d) 120°

**Q4. In ∆ABC, ∠BAC = 90° and AD⊥BC. If BD = 3 cm and CD = 4 cm, then length of AD is**

(a) 2√3 cm

(b) 3.5 cm

(c) 6 cm

(d) 5 cm

**Q5. The radii of two concentric circles are 17 cm and 25 cm, a straight line PQRS intersects the larger circle at the points P and S and intersects the smaller circle at the points Q and R. If QR = 16 cm, then the length (in cm.) of PS is**

(a) 41

(b) 33

(c) 32

(d) 40

**Q6. AB is a diameter of a circle with centre O. The tangents at C meets AB produced at Q. If ∠CAB = 34°, then measure of ∠CBA is**

(a) 56°

(b) 68°

(c) 34°

(d) 124°

**Q7. Among the angles 30°, 36°, 45°, 50° one angles cannot be an exterior angle of a regular polygon. The angle is**

(a) 30°

(b) 36°

(c) 45°

(d) 50°

**Q8. In ∆ABC, ∠A + ∠B = 65°, ∠B + ∠C = 140°, then find ∠B.**

(a) 40°

(b) 25°

(c) 35°

(d) 20°

**Q9. In a triangle ABC, ∠A = 90°, ∠C = 55°, (AD) ̅⊥(BC) ̅. What is the value of ∠BAD>**

(a) 35°

(b) 60°

(c) 45°

(d) 55°

**Q10. In a regular polygon, the exterior and interior angles are in the ratio 1 : 4. The number of sides of the polygon is**

(a) 5

(b) 10

(c) 3

(d) 8

**Q11. D is any point on side AC of ∆ABC. If P, Q, X, Y are the mid-point of AB, BC,AD and DC respectively, then the ratio of PX any QY is**

(a) 1 : 2

(b) 1 : 1

(c) 2 : 1

(d) 2 : 3

**SOLUTIONS**