

Quantitative Aptitude

Mensuration (Square, Rhombus, Triangle, Rectangle)

	Mensuration (Square, Miombus, Triangle, Nectangle)				
Shape	Area Formula	Perimeter Formula	Parameters		
Square	$A = a^2$	P = 4a	a = side		
Rectangle	$A = l \times b$	P = 2(l + b)	l = length, b = breadth		
Scalene Triangle	$A = \sqrt{[s(s-a)(s-b)(s-c)]},$ s = (a+b+c)/2	P = a + b + c	a, b, c = sides		
Isosceles Triangle	$A = (b/4) \times \sqrt{(4a^2 - b^2)}$	P = 2a + b	a = equal sides, b = base		
Equilateral Triangle	$A = (\sqrt{3}/4) a^2$	P = 3a	a = side		
Rhombus	$A = (1/2) \times d_1 \times d_2$	P = 4a	$a = side, d_1, d_2 = diagonals$		

Mensuration (Circle, Parallelogram, Trapezium)

Mensuration (Cheic, Laranelogram, Trapezium)					
Figure	Area Formula	Perimeter / Circumference Formula			
Circle Segment or Sector:	A = πr^2 (where r is radius) • Sector Area = $(\theta/360) \times \pi r^2$ • Arc Length = $(\theta/360) \times 2\pi r$	$C = 2\pi r$ or $C = \pi d$ (where $d = 2r$)			
Parallelogram	$A = Base \times Height$ $A = b \times h$	P = 2(a + b) (where a and b are adjacent sides)			
Trapezium	A = ½(a + b)h (where a and b are parallel sides, h is height)	P = a + b + c + d (sum of all four sides)			

Mensuration (Cube, Cuboid, Sphere, Cone, Cylinder)

Mensuration (dabe; dabora; spriere; done; dynnaer)					
<u>CUBE</u>	,	All sides are equal. It has six	\circ Volume = a^3		
		faces and 12 edges.	$\circ \text{Total surface area} = 6a^2$		
			$\circ \text{Diagonal} = a\sqrt{3}$		
			Sum of all edges = 12a		

CYLINDER

- \circ Volume of cylinder = area of base × height = $\pi r^2 h$
- \circ Curved surface area = Perimeter of base × height = $2\pi rh$
- \circ Total surface Area = curved surface area + area of both the circles

o When the rectangular sheet is folded along its length, then the length becomes the circumference of the base of the cylinder and breadth becomes the height of the cylinder.

HOLLOW CYLINDER

- Volume of hollow cylinder = $\pi(R^2 r^2)h$
- \circ Curved surface area = $2\pi (R + r) h$
- \circ Total surface area = $2\pi (R + r)h + 2\pi (R^2 r^2)$
- $= 2 \pi (R + r) \{h + R r\}$

Where, R = External radius of cylinder, r = internal radius of cylinder, h = height

CONE

- Volume = $\frac{1}{3}$ × base area × height = $\frac{1}{3}$ $\pi r^2 h$
- Slant height (l) = $\sqrt{r^2 + h^2}$
- \circ Curved surface area = πrl
- Total surface area = $\pi r l + \pi r^2 = \pi r (l + r)$

• Cone formed by rotating right angled triangle about its height:

ddala

- \circ Volume of cone so formed = $\frac{1}{3}\pi b^2 a$
- \circ Similarly, Cone formed by rotating right angled triangle about its base:

Volume of cone so formed $=\frac{1}{3}\pi a^2 b$

 \circ Similarly, Cone formed by rotating right angled triangle about its hypotenuse :

Volume of cone so formed = $\frac{1}{3}\pi r^2 c$

(where r is the altitude on hypotenuse and $r = \frac{a \times b}{c}$)

Note: If the base is not round, it will be called a pyramid. A pyramid can have various shapes of the base example: square, rectangular, triangular etc.

SPHERE

- \circ Volume of sphere = $\frac{4}{3}\pi r^3$
- o Curved Surface area
- = Total surface area = $4\pi r^2$

HOLLOW SPHERE OR SPHERICAL SHELL:

- Volume of hollow sphere = $\frac{4}{3} \pi (R^3 r^3)$
- \circ Internal surface area = $4\pi r^2$
- \circ External surface area = $4\pi R^2$

Here R =external radius and r =internal radius

HEMISPHERE

- \circ Volume of the hemisphere = $\frac{2}{3}\pi r^3$
- \circ Total surface area = $3\pi r^2$
- \circ Curved surface area = $2\pi r^2$

Where, r = radius

Mensuration (Prism, Pyramid, Tetrahedron, Frustum)

PRISM

- Volume of prism = area of base × height
- Lateral surface area = Perimeter of base × height
- Total surface Area = Lateral surface area + areaof base and top surface

PYRAMID

- Pyramid means a structure with regular polygon as its base and sloping sides that meet in a point at the top.
- \circ In Pyramid, with n sided regular polygon at its base, total number of vertices = n + 1
- Volume = $\frac{1}{3}$ × base area × height
- Slant height (l) = $\sqrt{r^2 + h^2}$
- $\circ \text{ Lateral surface area} = \frac{Perimeter \times slant \ height}{2}$
- o Total Surface area = Lateral surface area + Area of base

TETRAHEDRON

It is a 3D figure made by joining four equilateral triangles.

 \circ Volume (V)= $\frac{1}{3}$ × base area × height

$$\Rightarrow V = \frac{1}{3} \times \frac{\sqrt{3}}{4} a^2 \times \left(\frac{\sqrt{6}}{12} a + \frac{\sqrt{6}}{4} a\right)$$

- ⇒ V = $\frac{\sqrt{2}}{12}a^3$ (Remember this formula)
- Lateral surface area = $3 \times \frac{\sqrt{3}}{4} a^2$
- \circ Total surface area = $4 \times \frac{\sqrt{3}}{4} a^2$

FRUSTUM OF CONE

Slant height (l)

$$=\sqrt{h^2 + (R - r)^2}$$

o Curved Surface Area

$$=\pi (R+r) l$$

Total surface area

$$= \pi (R + r)l + \pi R^2 + \pi r^2$$

$$= \pi \{ (R + r) l + R^2 + r^2 \}$$

$$OVolume = \frac{1}{3}\pi h(r^2 + R^2 + rR)$$

IMP. UNIT CONVERSION:

- \circ 1*m*³ = 1000 litres
- \circ 1 liter = 1000 cm³
- \circ 1 meter = 10 decimeter = 100 cm = 1000 millimeter
- \circ 1 meter = 10^{-1} decameter = 10^{-2} hectometer = 10^{-3} kilometer

Mensuration (Other Important Formulas)

Euler's Theorem (Polyhedra)

F+V-E=2

Where: F = Number of faces, V = Number of vertices (corners), E = Number of edges

For more study material and quizzes check out SSC CGL Target 150+ Success Series