

# **Quantitative Aptitude**

## **Co-ordinate Geometry**

A point in the plane is represented as (x, y) where x and y are coordinates.

The plane is divided into four quadrants by the x-axis and y-axis.

| The plane is divided into four quadrants by the x-axis and y-axis. |                                                                                                                                                        |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distance Formula:                                                  | Distance between two points $(x_1, y_1)$ and $(x_2, y_2)$ is:                                                                                          |
|                                                                    | Distance = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$                                                                                                    |
| Midpoint Formula:                                                  | Midpoint of line segment joining $(x_1, y_1)$ and $(x_2, y_2)$ is:                                                                                     |
|                                                                    | $Midpoint = \left(\frac{x^1 + x^2}{2}, \frac{y^1 + y^2}{2}\right)$                                                                                     |
| Section Formula:                                                   | Coordinates of point dividing the segment joining $(x_1, y_1)$ and $(x_2, y_2)$ in ratio m:n:                                                          |
|                                                                    | $Point = \left(\frac{m x^2 + n x^1}{m + n}, \frac{m y^2 + n y^1}{m + n}\right)$                                                                        |
| Slope of a Line:                                                   |                                                                                                                                                        |
| Stope of a Line.                                                   | • Slope (m) = $\frac{y^2 - y^1}{x^2 - x^1}$                                                                                                            |
|                                                                    | Horizontal line slope = 0     Vertical line slope = undefined                                                                                          |
| Equation of a Line:                                                | <ul> <li>Vertical line slope = undefined</li> <li>Slope-Intercept Form: y = mx + c</li> </ul>                                                          |
| Equation of a Line.                                                | • Point-Slope Form: $y - y_1 = m(x - x_1)$                                                                                                             |
|                                                                    | • Two-Point Form: $\frac{y-y^1}{y^2-y^1} = \frac{x-x^1}{x^2-x^1}$                                                                                      |
|                                                                    |                                                                                                                                                        |
| Distance of a Point                                                | <ul> <li>General Form: Ax + By + C = 0</li> <li>Distance d of point (x<sub>0</sub>, y<sub>0</sub>) from line Ax + By + C = 0 is:</li> </ul>            |
| from a Line:                                                       |                                                                                                                                                        |
| nom a Line.                                                        | $d = \frac{ Ax^0 + By^0 + C }{\sqrt{A^2 + B^2}}$                                                                                                       |
| Area of Triangle                                                   | Area = $\frac{1}{2}  x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) $                                                                                |
| Formed by Points:                                                  | 2 1 10 2 3 3 3 2 0 3 2 3 3 3 1                                                                                                                         |
| Conditions for                                                     | Points $(x_1, y_1)$ , $(x_2, y_2)$ , $(x_3, y_3)$ are collinear if area = 0                                                                            |
| Collinearity:                                                      |                                                                                                                                                        |
| Reflection of Points                                               | <ul> <li>Reflection about x-axis: If point is (x, y), its reflection is (x, -y).</li> </ul>                                                            |
|                                                                    | • Reflection about y-axis: If point is (x, y), its reflection is (-x, y).                                                                              |
|                                                                    | <ul> <li>Reflection about origin: Point (x, y) reflects to (-x, -y).</li> <li>Reflection about line y = x: Point (x, y) reflects to (y, x).</li> </ul> |
|                                                                    | • Reflection about line $y = x$ : Point $(x, y)$ reflects to $(-y, x)$ .                                                                               |
| Circle Concept                                                     | A circle is the set of all points equidistant from a fixed point called the center.                                                                    |
| •                                                                  | $(x-h)^2 + (y-k)^2 = r^2$                                                                                                                              |
|                                                                    | Circle with center at origin (0, 0):                                                                                                                   |
|                                                                    | $x^2 + y^2 = r^2$                                                                                                                                      |
|                                                                    | Radius Formula:                                                                                                                                        |
|                                                                    | $r = \sqrt{[(x - h)^2 + (y - k)^2]}$                                                                                                                   |
|                                                                    | General form of circle: $x^2 + y^2 + 2gx + 2fy + c = 0$                                                                                                |
|                                                                    | <b>Center:</b> (-g, -f)                                                                                                                                |
|                                                                    | <b>Radius:</b> $\sqrt{(g^2 + f^2 - c)}$                                                                                                                |
|                                                                    | Tangent to a circle:                                                                                                                                   |
|                                                                    | If tangent touches circle at $(x_1, y_1)$ :                                                                                                            |
|                                                                    | $(x - h)(x_1 - h) + (y - k)(y_1 - k) = r^2$                                                                                                            |
|                                                                    |                                                                                                                                                        |



#### System of Linear Equations

For two variables x and y, a system of two linear equations can be written as:

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

where  $a_1$ ,  $b_1$ ,  $c_1$ ,  $a_2$ ,  $b_2$ ,  $c_2$  are constants.

#### **Types of Solutions:**

### 1. Unique Solution:

- The two lines intersect at exactly one point.
- Equations are consistent and independent.
- Occurs when  $\left(\frac{a^1}{a^2}\right) \neq \left(\frac{b^1}{h^2}\right)$ .

#### 2. No Solution:

- The lines are parallel and never intersect.
- Equations are inconsistent.
- Occurs when  $\left(\frac{a^1}{a^2}\right) = \left(\frac{b^1}{b^2}\right) \neq \left(\frac{c^1}{c^2}\right)$ .

#### 3. Infinite Solutions:

- The lines coincide (are the same line).
- Equations are consistent and dependent.
- Occurs when  $\left(\frac{a^1}{a^2}\right) = \left(\frac{b^1}{b^2}\right) = \left(\frac{c^1}{c^2}\right)$









For more study material and quizzes check out SSC CGL Target 150+ Success Series

